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Abstract Let E = A−iB be a Hermite-Biehler entire function of exponential type
τ/2 where A and B are real entire, and consider dµ(x) = dx/|E(x)|2. We show that
the sign of the product AB is an extremal signature for the space of functions of
exponential type τ with respect to the norm of L1(µ). This allows us to find best
approximations by entire functions of exponential type τ in L1(µ)-norm to certain
special functions (e.g., the Gaussian and the Poisson kernel).
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1 Introduction

An entire function F is said to be of exponential type τ ≥ 0 if

|F (z)| . e(τ+ε)|z|

for every ε > 0 and z ∈ C. (The implied constant may depend on ε, but not z.)
We denote by B(τ) the class of entire functions of exponential type τ . For a Borel
measure µ on R and 1 ≤ p ≤ ∞ we define

Bp(µ, τ) = B(τ) ∩ Lp(µ).

We write Bp(τ) if µ is Lebesgue measure.
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Let τ > 0 and µ a Borel measure on R. We are interested in high pass functions

for B1(µ, τ), that is, bounded, µ-measurable ψ : R→ C such that∫
R
F (x)ψ(x)dµ(x) = 0 (1.1)

for all F ∈ B1(µ, τ). We denote by A(µ, τ) the class of high pass functions for
B1(µ, τ). (We use the letter A since these functions correspond to the class of
integration functionals on L1(µ) that annihilate B1(µ, τ).) Of particular interest
to us is the subclass

S(µ, τ) = {ψ ∈ A(µ, τ) : |ψ| = 1 µ-a.e.}.

The elements of S(µ, τ) will be called extremal signatures for B1(µ, τ) or simply
extremal signatures, if measure and type are clear from the context. The following
connection between extremal signatures and best approximation is well known and
explains why the study of high pass signatures is relevant. For w = reiθ with r > 0
and 0 ≤ θ < 2π we define sgn(w) = eiθ, and we set sgn(0) = 0.

Theorem A [19, Theorem 1.7, 6◦]. Let f ∈ L1(µ), and define for F ∈ B1(µ, τ) a

function ψ = ψf,F ∈ L∞(R) by

ψ(x) = sgn(f(x)− F (x)).

If ψ ∈ S(µ, τ), then

‖f − F‖1 ≤ ‖f −G‖1

for all G ∈ B1(µ, τ). (We say in this case that F is a best approximation to f in

L1(µ)-norm.)

The measures µ that we consider are defined below in (1.3) and the extremal
signatures are given in (1.5).

By way of motivating our results we describe briefly the classical case (es-
sentially due to M.G. Krein [11]) when µ is the Lebesgue measure. In this case,
extremal signatures have an equivalent formulation in terms of the distributional
Fourier transform ψ̂ of ψ. By the Paley-Wiener theorem

B1(τ) = {F ∈ L1(R) : F̂ (t) = 0 for |t| ≥ τ/(2π)}.

Equation (1.1) then immediately implies that F is a best approximation to f

in L1(R) if and only if ψ̂ is supported in R\(− τ
2π ,

τ
2π ). One such signature is ψ0

defined by

ψ0(x) = sgn sin τx. (1.2)

It can be seen from the Fourier series expansion of ψ0 that ψ0 is an extremal
signature for B1(τ). This leads to the classical constructive approach of finding best
approximations for f : a candidate for the best approximation to f can be obtained
by considering an element F ∈ B1(τ) that satisfies f(x0+πn/τ) = F (x0+πn/τ) for
some x0 ∈ R and all n ∈ Z. If f − F has sign changes at the values x = x0 + πn/τ

and nowhere else on the real line, then by the previous discussion F will be a best
approximation to f . This construction succeeds for many elementary functions,

e.g., the Gaussian Gλ(x) = e−λx
2

, the kernel gλ(x) = e−λ|x|, or the Poisson kernel
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Pλ(x) = λ
π (x2 + λ2)−1. These cases are contained in the classical theorem of B.

Sz.-Nagy [15], see also the articles by O.L. Vinogradov [21] and M. Ganzburg [6].
We are interested in extremal signatures that play an analogous role for B1(µ, τ)

as the signature ψ0 in (1.2) plays for B1(τ). (The starting point of our investigation
was interest in the situation for the measure dx/(1 + x2).) Thus, in addition to an
extremal signature we need an interpolation method that creates entire approx-
imations so that the difference of approximation and function has sign changes
only at the sign changes of the signature.

Recent investigations [3], [4] into the Beurling-Selberg extremal problem (es-
sentially the problem of best onesided L1(µ)-approximation) utilized an interpola-
tion method with the following properties. For given f (e.g., the Gaussian or the
Poisson kernel) and a Laguerre-Pólya entire function L, the interpolation method
creates under mild conditions an entire function G = Gf,L such that

f(x)−G(x) = L(x)H(x)

on the real line, where H is of one sign on R and H(x) . (1+x2)−1. The signature
of f −G is therefore completely determined by L, and the growth estimate for H
together with the requirement that f −G ∈ L1(µ) gives an integrability condition
that L needs to satisfy.

In order to obtain the analogues for (1.2), we are therefore led to seek for a
Laguerre-Pólya entire function L of exponential type τ with the following proper-
ties.

1. The sign of L is an element of S(µ, τ),
2. the function L satisfies ∫

R

L(x)

1 + x2
dµ(x) <∞.

We succeed at this task for measures µ = µM given by

µM (A) =

∫
A

dx

M(x)
, (1.3)

where M is an entire function of exponential type τ0 ≥ 0 that is positive on the
real line and can be written as the quotient of two bounded analytic functions in
the upper half plane. (Measures of this form occur in a theory developed by L.
de Branges [2]; Section 2 includes summary of the required notions of de Branges’
theory of Hilbert spaces of entire functions.)

The number τ0 associated with (1.3) is fixed, and the following results hold
for all τ ≥ τ0. We construct in Section 3 an associated entire function Eτ/2 of
exponential type τ/2 with the property that∫

R

F (x)

M(x)
dx =

∫
R

F (x)

|Eτ/2(x)|2
dx (1.4)

for all F ∈ L2(µM ). Writing Aτ/2 and Bτ/2 for the unique real entire functions
such that Eτ/2 = Aτ/2 − iBτ/2, we prove in Theorem 1 that ψ defined by

ψ(x) = sgn(Aτ/2(x)Bτ/2(x)) (1.5)
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is an extremal signature for B1(µM , τ). Furthermore, we indicate in Section 4 that
the interpolation method mentioned above allows for any f ∈ {Gλ, gλ, Pλ} the
construction of Ff ∈ B1(µM , τ) such that

sgn(Ff − f) = sgn(Aτ/2Bτ/2).

An appeal to Theorem A implies that Ff must necessarily be a best approxi-
mation from B1(τ, µ) to f in L1(µ)-norm. In this sense (1.5) is the correct general-
ization of (1.2). For the Poisson kernel and the conjugate Poisson kernel we obtain
in addition in Theorem 5 a fairly explicit representation of the approximation error
in terms of Eτ/2.

We note that if M ≡ 1, then the construction in Section 3 gives Eτ/2(z) =

e−i(τ/2)z. Inserting this in Theorem 1 leads to ψ(x) = sgn(cos(τx/2) sin(τx/2)) =
ψ0(x), hence the classical results for Lebesgue measure are recovered.

It is crucial for our method that dµM = dx/|Eτ/2|2. Requiring (1.4) only for
all F in the de Branges space H(Eτ/2) would not suffice. This is the reason why
we can handle only measures of the form (1.3). It is worth emphasizing that in
this case the structure of the L2(µ)-space for exponential type τ/2 determines the
form of the best approximation of exponential type τ in L1(µ).

We mention finally that the notion of an extremal signature occurs also in
L∞-approximation problems. The theory related to this type of signature differs
significantly from L1 signatures, and we do not touch on this here. For readers
interested in this direction we refer to A. Eremenko and P. Yuditskii [5] and Y.
Xu [22].

2 Entire functions of bounded type

In this section we review known facts about the Nevanlinna class, Hardy spaces,
and de Branges spaces. (Readers familiar with this material may safely skip this
section.) For convenience we include sketches of the shorter proofs and references
to the longer proofs. Sources for this section are the books by M. Rosenblum and
J. Rovnyak [16], J. Levin [13], and L. de Branges [2].

For any entire function F we use the notation F ∗(z) = F (z). For nonnegative
u we set log+(u) = max(log u, 0). An analytic function F defined in the upper half
plane C+ is said to have bounded type, if F is the quotient of two functions that
are analytic and bounded in C+, and the denominator function is non-zero in C+.
(This is sometimes called the Nevanlinna class of C+.) By [16, Theorem 6.13] the
function F has the factorization

F (z) = e−iνzB(z)
S+(z)

S−(z)
G(z) (2.1)

in C+, where ν is real, B is a Blaschke product, S+, and S− are exponentials of
Herglotz transforms of singular positive measures, and G is an outer function. The
number ν = ν(F ) is called the mean type of F in C+; one of the formulas for its
calculation is

ν(F ) = lim sup
y→∞

y−1 log |F (iy)|. (2.2)
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By a classical theorem of M.G. Krein there is a close connection between the
mean types of F in the upper and lower half plane (the latter being also ν(F ∗))
and exponential type.

Lemma 1 Let F : C→ C be an entire function. The following are equivalent.

1. F and F ∗ have bounded type in the upper half plane.

2. F has exponential type and ∫
R

log+ |F (x)|
1 + x2

dx <∞. (2.3)

If either (and therefore both) of these conditions hold, then the exponential type τ

of F satisfies τ ≤ max(ν(F ), ν(F ∗)).

Proof This was shown first by Krein in [12]; see also [16, Theorem 6.17].

We denote by C the class of entire functions satisfying either (and hence both)
of the conditions in Lemma 1. We require the following decomposition result es-
sentially due to N. Akhiezer.

Lemma 2 Let F ∈ C satisfy F (x) ≥ 0 for all x ∈ R. Denote by τ the exponential type

of F . Then there exists an entire function U ∈ C of exponential type τ/2 having zeros

only in the closed lower half plane such that F = UU∗.

Proof Denote by A the class of entire functions G such that

∞∑
k=1

∣∣∣∣= 1

zk

∣∣∣∣ <∞,
where zk denotes the nonzero zeros of G (listed with multiplicity). By a theorem of
Cartwright an entire function F ∈ C of exponential type is in A, and by a theorem
of Akhiezer a nonnegative function F ∈ A of exponential type τ can be written
as F = UU∗ where U is an entire function of exponential type τ/2 with zeros in
=z ≤ 0. Since F satisfies (2.3), U satisfies (2.3) as well. (See, e.g., Theorem 7 on
page 243 and Theorem 1 on page 437 of [13].)

An entire function E satisfying the inequality

|E(z)| > |E∗(z)| (2.4)

for all z with =z > 0 will be called a Hermite-Biehler (HB) function. We denote by
H(E) the vector space of entire functions F such that∫ ∞

−∞
|F (x)/E(x)|2dx <∞ (2.5)

and the functions F/E and F ∗/E have bounded type and nonpositive mean type
in C+. It is a Hilbert space with scalar product

〈F,G〉E =

∫ ∞
−∞

F (x)G∗(x)|E(x)|−2dx.
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We define A = (1/2)(E + E∗) and B = (i/2)(E − E∗). A fundamental result
of de Branges from the 1960’s is the recognition that this space is a reproducing
kernel Hilbert space; we briefly sketch the argument. It follows from (2.4) that
E has no zeros in the open upper half plane, and it follows from the definition
of H(E) that F/E and F ∗/E have no zeros in an open set containing the closed
upper half plane. The condition that F/E and F ∗/E have non-positive mean type
implies that the Cauchy integral formula for the upper half plane holds for F/E
and F ∗/E (e.g., [2, Theorem 12], note also that Cauchy formulas for F/E∗ and
F ∗/E∗ in the lower half plane hold), and it follows with an elementary residue
calculation that H(E) has the reproducing kernel K given by

K(w, z) =
B(z)A(w̄)−A(z)B(w̄)

π(z − w̄)
(2.6)

for z 6= w̄.
We denote byHp(E) the vector space that is obtained by replacing the L2-norm

in (2.5) by the Lp-norm. (We require p = 1 and p = 2.)
The above definitions can be recast in the language of Hardy spaces. We recall

that the Hardy space Hp(C+) is the space of functions F that are analytic in C+

such that the horizontal norms ‖F (. + iy)‖p are uniformly bounded for y > 0. In
particular, H∞(C+) is the space of bounded analytic functions in the upper half
plane.

Lemma 3 Let E be a HB function that has bounded type in C+, and let F be an entire

function. For 1 ≤ p <∞ the following conditions are equivalent.

1. F belongs to Hp(E),

2. F has exponential type, max(ν(F ), ν(F ∗)) ≤ ν(E), F/E ∈ Lp(R), and∫
R

log+ |F (x)|
1 + x2

dx <∞,

3. F has exponential type τ ≤ ν(E) and F/E ∈ Lp(R).

Proof We follow J. Holt and J.D. Vaaler [10, Lemma 12]. The definition of ν(F )
implies that ν(FG) = ν(F ) + ν(G), and (2.2) shows ν(F +G) ≤ max(ν(F ), ν(G)).

The assumption F ∈ Hp(E) implies that ν(F/E) ≤ 0. We obtain ν(F ) =
ν(E(F/E)) ≤ ν(E), and similarly ν(F ∗) ≤ ν(E). Jensen’s inequality gives∫

R
(1 + x2)−1 log+ |F (x)/E(x)|dx ≤ π

p
log

(
1 +

1

π
‖F/E‖pp

)
<∞,

and since E satisfies (2.3) by assumption, F satisfies (2.3) as well. This proves that
(1) implies (2). Lemma 1 shows that (2) implies (3). Since E is HB, it has no zeros
in the upper half plane, and hence 1/E is of bounded type in C+. It follows from
(2.1) that ν(1/E) = −ν(E), hence (3) implies that ν(F/E) ≤ 0, which is needed to
show (1).

Lemma 4 Let 1 ≤ p ≤ ∞, and let E be a Hermite-Biehler entire function without

real zeros. The following conditions are equivalent.

1. F ∈ Hp(E),

2. F/E and F ∗/E are in Hp(C+).
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Proof The lemma is a fairly direct consequence of (2.1) (e.g., [7, Proposition 8]).
We note that F/E and F ∗/E are analytic on a set containing the closure of C+.

Assume first that F/E ∈ Hp(C+). If p =∞, then the quotients are bounded in
C+ and hence have bounded type and non-positive mean type. For 1 ≤ p <∞ we
note [16] that F/E = AG where A is an inner function and G is an outer function.
Comparing with (2.1) it follows in particular that the exponential e−iτz is part
of the inner function, which is to say that F/E has non-positive mean type. The
same argument works for F ∗/E.

For the other direction, assume that F/E has bounded type and mean type
τ ≤ 0, and F/E ∈ Lp(R). An estimate involving the Poisson integral of log |F/E|
and (2.1) leads with an application of Jensen’s inequality to the inequality∣∣∣∣F (x+ iy)

E(x+ iy)

∣∣∣∣ ≤ y

π

∫
R

|F (u)/E(u)|
(x− u)2 + y2

du

for y > 0, and hence∫
R
|F (x+ iy)/E(x+ iy)|pdx ≤

∫
R
|F (x)/E(x)|pdx

which implies that F/E ∈ Hp(C+).

As is common, we denote by ϕ : R→ C a continuous, increasing function with
the property that

eiϕ(x)E(x) ∈ R
for all real x. The function ϕ is called a phase of E; it is unique up to a constant
multiple of π (cf. [2, Problem 48]). We will make use of the fact that e2iϕ(x) is the
boundary function of E∗/E ∈ H∞(C+).

Assume that E has no real zeros. Since the phase of ϕ is monotonically increas-
ing, it follows that A and B have only real zeros, their zeros are simple, and they
interlace. In particular, these functions have no common zeros. Hence, sgn(AB)
has sign changes located exactly at the simple zeros of AB. It will be important
below that AB/|E2| is bounded on the real line.

For easy reference we record the following classical fact from Hardy space
theory.

Lemma 5 If F ∈ H1(C+), then ∫
R
F (x)dx = 0.

Proof This follows since F̂ (t) = 0 for t < 0 and the Fourier transform of an L1-
function is continuous.

3 Extremal signatures

We consider in this section extremal signatures for B1(µ, 2τ). The change from τ

to 2τ simplifies notation, since most of the calculations for B1(µ, 2τ) will be done
in B2(µ, τ).

We denote by C+(τ) the class of entire functions M with the following proper-
ties.
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(i) M is an entire function of exponential type τ ,
(ii) M is positive on the real line,
(iii) The function M satisfies ∫

R

log+ |M(x)|
x2 + 1

dx <∞. (3.1)

Let τ0 ≥ 0. Let M ∈ C+(2τ0). It follows from Lemma 2 that M = UU∗ where
U ∈ C has exponential type τ0 and zeros only in the open lower half plane. For
τ ≥ τ0 we define Eτ,α by

Eτ,α(z) = U(z)e−i(τ−τ0)z−iα. (3.2)

Let Aτ,α, Bτ,α be the unique real entire functions of exponential type ≤ τ with
Eτ,α = Aτ,α − iBτ,α. Recall that µM is given by

µM (A) =

∫
A

dx

M(x)
.

Theorem 1 Let M ∈ C+(2τ0), and let τ ≥ τ0. Then ψ = sgn(Aτ,αBτ,α) is an

extremal signature for B1(µM , 2τ).

Proof Throughout this proof we set µ = µM and E = Eτ,α with E = A − iB. By
construction U (and hence E2) is an HB function that has bounded type in C+.
Let F ∈ B1(µ, 2τ). Lemma 3 implies that F ∈ H1(E2), and Lemma 4 implies that

F/E2 ∈ H1(C+). (3.3)

Let N ∈ N and define SN : C→ C by

SN (z) =
4

πi

N−1∑
k=0

1

2k + 1

(
E∗(z)

E(z)

)2k+1

.

Since E is Hermite-Biehler, it follows that E∗/E ∈ H∞(C+). The identity

FSN
EE∗

=
4F

πiE2

N−1∑
k=0

1

2k + 1

(
E∗

E

)2k

implies with (3.3) that FSN (EE∗)−1 ∈ H1(C+) for all N ∈ N. For real x we have
M(x) = |E(x)|2. This and Lemma 5 imply that for all F ∈ B1(µ, 2τ) and all N ∈ N∫

R
F (x)SN (x)dµ(x) =

∫
R

F (x)SN (x)

E(x)E∗(x)
dx = 0.

Since F ∗ ∈ B1(µ, 2τ), the identity F (z) = 1
2 (F (z) +F ∗(z))− i · i2 (F (z)−F ∗(z))

shows that any element of B1(µ, 2τ) can be written as a complex linear combination
of real entire functions in B1(µ, 2τ). We obtain for all F ∈ B1(µ, 2τ) that∫

R
F (x)<SN (x)dµ(x) = 0. (3.4)
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Denote by ϕ the phase function of E. Recall that ϕ is continuous and mono-
tonically increasing on R, and

E∗(x)

E(x)
= e2iϕ(x) (3.5)

for all real x. This allows us to rewrite (3.4) as∫
R
F (x)

N−1∑
k=0

4 sin((4k + 2)ϕ(x))

π(2k + 1)
dµ(x) = 0.

The inner sum converges to sgn sin 2ϕ(x) and is uniformly bounded in x and
N . Hence dominated convergence implies that∫

R
F (x) sgn sin(2ϕ(x))dµ(x) = 0,

which means that sgn sin 2ϕ ∈ S(µ, 2τ). Finally, (3.5) implies that sin 2ϕ = 2|E|−2AB

on R, which finishes the proof.

By way of an example we consider

dν(x) =
dx

x2 + 1
.

We may take U(z) = z + i, which means that τ0 = 0. This gives Eτ,α(z) =
(z + i)e−iτz−iα and hence

Aτ,α(z) = z cos(τz + α) + sin(τz + α)

Bτ,α(z) = z sin(τz + α)− cos(τz + α).

We would like to emphasize that the factorization of M leads to an explicit
construction of an entire function AτBτ whose real zeros are the points of sign
change for an extremal signature. Combined with the interpolation procedure of
the next section this allows constructions of best approximations.

4 LP functions and interpolation

A Laguerre-Pólya function is a real entire function L with Hadamard factorization
given by

L(z) =
L(r)(0)

r!
zre−az

2+bz
∞∏
j=1

(
1− z

ξj

)
ez/ξj , (4.1)

where r ∈ Z+, a, b, ξj ∈ R, with a ≥ 0, ξj 6= 0 and

∞∑
j=1

ξ−2
j <∞

(the product may be finite or empty). We say that L has degree N = NL, with
0 ≤ N <∞, if a = 0 in (4.1) and L has exactly N zeros counted with multiplicity.
Otherwise we set NL =∞.
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For our purposes we require the property of Laguerre-Pólya functions that in
vertical strips their reciprocals can be written as Laplace transforms. In fact, if
(τ1, τ2) ⊂ R is an open interval not containing any zeros of L (we allow τ1, τ2 ∈
{±∞}) and c ∈ (τ1, τ2), we have

1

L(z)
=

∫ ∞
−∞

gc(t)e
−ztdt (4.2)

for τ1 < <(z) < τ2, where

gc(t) =
1

2πi

∫ c+i∞

c−i∞

est

L(s)
ds. (4.3)

The integral (4.3) is absolutely convergent if N ≥ 2, and is understood as a Cauchy
principal value if N = 1. If N = 0, (4.2) holds with gc being an appropriate Dirac
delta distribution. A simple application of the residue theorem gives us that gc = gd
if c, d ∈ (τ1, τ2). An account of this theory can be found in [8, Chapters II-V].

Throughout this section we denote by αL the smallest positive zero of F . (We
set αL =∞ if no such zero exists.) Analogously βL is the largest nonpositive zero
of L.

4.1 Approximation to the truncation of the exponential function

The following construction was developed in [3] in relation with the Beurling-
Selberg extremal problem. Let L be a Laguerre-Pólya function with L(αF /2) > 0.
(If αL = ∞, assume L(1) > 0.) Let g = gαL/2 (g = g1 if αL = ∞), and define for
λ > 0

I1(L, λ, z) = L(z)

∫ 0

−∞
e−zug(u− λ)du if <z < αL,

I2(L, λ, z) = e−λz − L(z)

∫ ∞
0

e−zug(u− λ)du if <z > βL.

(4.4)

Morera’s theorem implies that that z 7→ I1(L, λ, z) is analytic in <z < αL and
z 7→ I2(L, λ, z) is analytic in <z > βL. Multiplication of (4.2) by L(z)e−λz, a change
of variable in the right hand side, and inserting the resulting identity in (4.4) shows
that I1(L, λ, z) = I2(L, λ, z) for βL < <z < αL, and analytic continuation implies
that these functions are restrictions to their respective half planes of an entire
function in z that we will call I(L, λ, z). Moreover, estimation of the integrals in
(4.4) implies the existence of c > 0 so that

|I(L, λ, z)| ≤ c(1 + |L(z)|) (4.5)

for all z ∈ C.
To simplify notation we set

x0+ =

{
1 if x ≥ 0,

0 if x < 0.

Assume that L(0) = 0. We define an entire function z 7→ I◦(L, λ, z) by

I◦(L, λ, z) = I(L, λ, z)− g(−λ)
L(z)

z
.
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Lemma 6 Let λ > 0 and let L be an LP function with L(0) = 0 and L(αF /2) > 0.

Then

L(x)
(
I◦(L, λ, x)− x0+e−λx

)
≤ 0 (4.6)

for all real x, and I◦(L, λ, ξ) = ξ0+e
−λξ for all ξ 6= 0 with L(ξ) = 0. Moreover, there

exists C > 0 so that for all real x the inequality

|I◦(L, λ, x)− x0+e−λx| ≤ C
|L(x)|
1 + x2

(4.7)

is valid.

Proof It follows from (4.4) that

I◦(L, λ, x)− x0+e−λx =


−L(x)

∫ ∞
0

e−xu(g(u− λ)− g(−λ))du if x > 0,

L(x)

∫ 0

−∞
e−xu(g(u− λ)− g(−λ))du if x < 0.

Since both integrands equal zero at u = 0 it follows that the integrals are
O(|x|−2) for large |x|. We also get immediately that I◦(L, λ, ξ) = ξ0+e

−λξ for all
ξ 6= 0 with L(ξ) = 0. Inequality (4.6) follows once we show that g is monotonically
increasing on R.

We assume first that the zero of L at the origin is simple. Then L(z)/z extends
to an LP function that is positive at the origin. An integration by parts in (4.2)
gives

z

L(z)
=

∫
R
e−ztg′(t)dt

in an open vertical strip β < <z < α with β < 0 < α. Hence g′ is a totally positive
function in the sense of [8]. By a classical theorem of I.J. Schoenberg [17] (see
also [8, page 91]) the nth derivative of a totally positive function (if it exists) has
exactly n sign changes on the real line. Applying this to L(z)/z and g′ shows in
particular that g′ has no sign changes on the real line, and it must be positive since
L(z)/z is positive at the origin. This means that g is monotonically increasing.

If the zero of L at the origin has higher multiplicity, we iterate this argument.

Theorem 2 Let M ∈ C+(2τ0), let τ ≥ τ0, and let Eτ,α be defined by (3.2). Assume

in addition that Bτ,α(0) = 0 and AτBτ is positive in some interval with left endpoint

at the origin. Then for all F ∈ B1(µM , 2τ)∫
R

∣∣∣F (x)− x0+e−λx
∣∣∣ dµM (x) ≥

∫ ∞
0

e−λxsgn(Aτ (x)Bτ (x))dµM (x)

with equality if F (z) = I◦(AτBτ , λ, z).

Remark. For given M the conditions on Aτ,α and Bτ,α may be satisfied by a suitable
choice of α.
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Proof We set µ = µM and E = Eτ,α. It follows from Theorem 1 that sgn(AB) is
an extremal signature for B1(µ, 2τ). By construction I◦(AB, λ, x)−x0+e−λx has its
sign changes on the real line exactly at the zeros of AB.

Since E has exponential type τ , it follows that AB has exponential type 2τ . We
obtain from (4.5) that I◦(AB, λ, z) has the same exponential type. Since AB/M is
bounded on R, it follows from (4.7) that∫

R

∣∣∣I◦(AB, λ, x)− x0+e−λx
∣∣∣ dµ <∞.

The identity

|I◦(AB, λ, x)− x0+e−λx| = sgn(A(x)B(x))(I◦(AB, λ, x)− x0+e−λx)

and (1.1) for ψ = sgn(AB) gives∫
R

∣∣∣I◦(AB, λ, x)− x0+e−λx
∣∣∣ dµ(x) =

∫ ∞
0

e−λxsgn(A(x)B(x))dµ(x).

The inequality for F ∈ B1(µ, 2τ) follows from Theorem A.

4.2 Structure of Eτ,α for even measures

Best approximations to the Gaussian e−λx
2

and to e−λ|x| rely on interpolation
formulas that require the function AτBτ to be even. We show next that if M is
even, then α0 exists so that Aτ,α0Bτ,α0 is even.

Assume that M is even. Since an entire function of finite exponential type
is a function of order 1 and normal type in the language of Levin, Hadamard’s
factorization theorem (e.g., [13, page 24]) gives

M(z) = eaz+b
∏
ξ∈TM

(
1− z

ξ

)
ez/ξ

where TM is the set of zeros of M listed with multiplicity. We note that TM contains
no real numbers. Since M is even and positive on the real line, ξ ∈ TM implies
that −ξ, ξ,−ξ ∈ TM with the same multiplicity. We note that if =ξ < 0, then
−=ξ < 0, and the condition that M is positive on the real line implies that the
first exponential factor is of the form eαz+β with real α, β, and since M is even,
α = 0.

It follows that the function U defined by

U(z) = eβ/2
∏
ξ∈TM
=ξ<0

(
1− z

ξ

)
ez/ξ

satisfies UU∗ = M and U∗(z) = U(−z). We obtain Eτ,0(−z) = E∗τ,0(z). A direct
calculation gives

Aτ,π
4

(z)Bτ,π
4

(z) = −1

4

(
Eτ,0(z)2 + E∗τ,0(z)2

)
, (4.8)

which implies that Aτ,π
4
Bτ,π

4
is even.
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4.3 Approximation to e−λ|x|

For a Laguerre-Pólya entire function L we define I# by

I#(L, λ, z) = I(L, λ, z) + I(L, λ,−z), (4.9)

where I(L, λ, z) is defined in Section 4.1.

The necessary interpolation result for this case may be obtained from [3, Propo-
sition 8] where it is shown that for λ > 0 and L an even LP function with F (0) > 0
the inequality

L(x)
(
e−λ|x| − I#(L, λ, x)

)
≥ 0

is valid for all real x. Moreover, it is shown that I#(L, λ, ξ) = e−λ|ξ| for all ξ with
L(ξ) = 0. An application of this inequality combined with the above construction
of even L = Aτ,π/4Bτ,π/4 (which necessarily must have a nonzero value at the
origin, since its zeros are all simple, see Section 2) gives the following result.

Theorem 3 Let M ∈ C+(2τ0) be even, and let τ ≥ τ0. Then for all F ∈ B1(µM , 2τ)∫
R
|F (x)− e−λ|x||dµM (x) ≥

∫
R
e−λ|x|sgn(Aτ,π

4
(x)Bτ,π

4
(x))dµM (x)

with equality if F (z) = I#(Aτ,π
4
Bτ,π

4
, λ, z).

4.4 Approximation to the Gaussian

Let M(x) be even. As is shown in [4], an interpolation to the Gaussian can be
obtained in the following way. For an even LP function L, the Hadamard factor-
ization may be used to construct an LP function GL (of exponential type zero)
with

GL(z2) = L(z).

Similar to the proof of Lemma 6 it can be shown that L(x)(I(L, λ, x)−x0+e−λx) ≥
0 for all positive x. Applying this with GL instead of L and substituting x2 for x,
it follows that

GL(x)(I(GL, λ, x
2)− e−λx

2

) ≥ 0

for all real x. Properties of I(GL, λ, z
2) analogous to the properties of I◦(L, λ, z)

are proved in [4]. They imply the following statement.

Theorem 4 Let M ∈ C+(2τ0) be even, and let τ ≥ τ0. Then for all F ∈ B1(µM , 2τ)∫
R
|F (x)− e−λx

2

|dµM (x) ≥
∫
R
e−λx

2

sgn(Aτ,π
4

(x)Bτ,π
4

(x))dµM (x)

with equality if F (z) = I(GAτ, π
4
Bτ, π

4

, λ, z2).
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4.5 Interpolation of the Poisson kernel

For λ > 0 we define the Poisson kernel Pλ and conjugate Poisson kernel Qλ by

Pλ(z) =
λ

π(z2 + λ2)
,

Qλ(z) = λ−1zPλ(z).

Due to the fact that Pλ and Qλ are already meromorphic, the best approxi-
mations and the error representations have particularly simple expressions. Let E
be an entire function with E(iλ) 6= 0. (This is certainly satisfied if E is HB.) We
define Kλ,E and Lλ,E by

Kλ,E(z) = Pλ(z)

(
1− E(z)2 + E∗(z)2

E(iλ)2 + E∗(iλ)2

)
,

Lλ,E(z) = λ−1Pλ(z)

(
z − iλ E(z)2 − E∗(z)2

E(iλ)2 − E∗(iλ)2

) (4.10)

where z ∈ C. If E(−z) = E∗(z) for all z ∈ C, then evidently Kλ,E and Lλ,E are
entire functions. If E has exponential type τ , then Kλ,E and Lλ,E have exponential
type 2τ . We emphasize that in the first part of the following theorem the interpo-
lation is obtained by taking E = Eτ,0, while the extremal signature being used is
sgn(Aτ,π

4
Bτ,π

4
).

Theorem 5 Let M ∈ C+(2τ0), and let τ ≥ τ0. Assume that Eτ,0(−z) = E∗τ,0(z).

Then the following statements hold.

1. For all F ∈ B1(µM , 2τ)∫
R
|Pλ(x)− F (x)|dµM (x) ≥ 4

πEτ,0(iλ)Eτ,0(−iλ)
arctan

(
Eτ,0(−iλ)

Eτ,0(iλ)

)
with equality if F = Kλ,Eτ,0 .

2. For all F ∈ B1(µM , 2τ)∫
R
|Qλ(x)− F (x)|dµM (x) ≥ 4

πEτ,0(iλ)Eτ,0(−iλ)
arctanh

(
Eτ,0(−iλ)

Eτ,0(iλ)

)
,

with equality if F = Lλ,Eτ,0 .

Proof The identity Eτ,0(−z) = E∗τ,0(z) implies that E(iR) ⊆ R. Hence Eτ,0(iλ)2 +
E∗τ,0(iλ)2 ≥ 0. It follows from (4.8) and (4.10) that

Aτ,π
4

(x)Bτ,π
4

(x)(Kλ,Eτ,0(x)− Pλ(x)) ≥ 0

for all real x. Integrability of Kλ,Eτ,0 − Pλ with respect to µM follows from (4.10)
as well as the fact that Kλ,Eτ,0 has exponential type 2τ . It remains to show that∫

R
|Kλ,Eτ,0(x)− Pλ(x)|dµM (x) =

4

πEτ,0(iλ)Eτ,0(−iλ)
arctan

(
Eτ,0(−iλ)

Eτ,0(iλ)

)
.
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Since E∗τ,0/Eτ,0 is bounded by 1 in the upper half plane and its reciprocal is
bounded in the lower half plane, an application of the residue theorem gives∫

R

(
E∗τ (x)

Eτ,0(x)

)k
dx

x2 + λ2
=

{
πλ−1Eτ,0(iλ)−kE∗τ,0(iλ)k if k ≥ 0,

πλ−1Eτ,0(−iλ)−kE∗τ,0(−iλ)k if k < 0.
(4.11)

We note that

sgn(Aτ,π
4

(x)Bτ,π
4

(x)) = sgn cos 2ϕτ,0(x)

where ϕτ,0 is the phase of Eτ,0. The Fourier series of the sign of cos y gives

sgn cos 2ϕτ,0(x) =
2

π

∑
n∈Z

(−1)n

2n+ 1

(
E∗τ (x)

Eτ (x)

)2n+1

.

Multiplication by Kλ,Eτ (x) − Pλ(x), integration against dx/(Eτ,0(x)E∗τ,0(x))
and multiple applications of (4.11) give the evaluation. The proof for the conjugate
Poisson kernel is analogous using the fact that E2

τ,0 − (E∗τ,0)2 = −4iAτ,0Bτ,0.

5 Open problems

There are two questions that are immediately suggested by the results of the
previous sections.

1. Find an effective characterization of all extremal signatures for dx/M(x) where
M(x) is as in Theorem 1.

2. Extend the results of Theorem 1 to more general measures.

In the case of Lebesgue measure, an explicit parametrization of all extremal
signatures was found by B. Logan in his thesis [14]. Starting from the fact that
ψ ∈ A(dx, τ) is equivalent to

|Py ∗ ψ(x)| ≤ Ae−τy

for some A > 0, all real x, and y > 0, Logan showed that h ◦ ψ ∈ A(dx, τ) where
h is a periodic high pass function, and ψ is essentially the logarithm of an inner
function with exponential decay in the upper half plan and applied this with
h(x) = sgn sin τx to obtain his result. A full account of his argument can be found
in [18, Chapter 7.6]. For non-constant M there are not even conjectures with
regards to the correct formulation.

This type of representation would be useful to find best approximations to func-
tions with more than one discontinuity, e.g., characteristic functions of intervals
on the real line.

Regarding the second question, it is frequently possible to find descriptions
for high pass functions for a given measure, but these descriptions do not lend
themselves to investigations of ±1 functions. To give a simple example, consider
the measure x2dx. Define ψ to be of the form

ψ(x) = aj0(x) + bj1(x) + ψ0(x)

where j0 and j1 are the spherical Bessel functions j0(x) = sinx/x and j1(x) =
(sinx− x cosx)/x2, a, b ∈ C, and ψ0 is any element in A(dx, 1). It is easy to prove
that

∫
R F (x)j0(x)x2dx = 0 and

∫
R F (x)j1(x)x2dx = 0 for every F ∈ B1(x2dx, 1),

and hence ψ ∈ A(x2dx, 1), but the additive structure of this representation is not
well suited to investigate functions of absolute value 1.
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